
Introduction 

Critical dimension measurements are a key part of 
micro- and nano-scale solid state device 
characterization. Whether it is an electronic device 
in a semiconductor chip or a nanopore for DNA 
sequencing, critical dimensions often determine 
the overall performance and yield of the device 
during manufacturing. Utilizing image processing 
to analyze microscopy images is a common 
method for automatically performing critical 
dimension measurements. Transmission electron 
microscopy (TEM) is the primary tool used to 
image devices when nanoscale spatial resolution 
is required. However, there are a variety of 
mechanisms that generate contrast in TEM images, 
including diffraction, chemical composition, sample 
thickness, zone-axis alignment, and image 
defocus, all of which combine to generate the final 
image. This can make it very difficult to write a 
metrology recipe to automate critical dimension 
measurements using only conventional image 
processing. Although scanning transmission 
electron microscopy and spectroscopy techniques 
may provide signals that are easier to interpret or 
process [1], their acquisition speeds are significantly 
slower than regular TEM imaging. These issues 
and trade-offs are not unique to TEM; similar 
complexities can affect scanning electron 
microscopy and optical microscopy as well.

In this application note, we highlight how deep 
learning methods for image segmentation, such as 
convolutional neural networks (CNNs) or vision 
transformers, can help interpret the complex 
contrast of TEM images and segment a series of 
thin films in 3D NAND devices. This enables us to 

make accurate critical dimension measurements 
and extract the maximum amount of insight from 
the TEM dataset. Although we focus on an example 
from the semiconductor industry here, this process 
can be applied to devices for any application.

Data Collection and Processing
The development and application process for a 
deep-learning-based metrology recipe is illustrated 
in Figure 1. The first step in development is to 
collect and annotate a set of training images from 
the 3D NAND device. As much as possible, the 
dataset should cover the full breadth of the possible 
images that the metrology recipe is expected to 
handle; all significant features of the sample should 
be represented in the training data. The process of 
annotating the images involves manually labeling/
drawing the regions that the model needs to identify 
in the training images. Although this process can 
be time consuming, there are ways to speed up the 
process. If automation is requested as part of an 
ongoing/recurring imaging job, then past data can 
be utilized, and new training images do not need to 
be collected. Conventional image processing can 
also help generate approximate annotations which 
are then refined manually. Most importantly, the 
training dataset only needs to be fully compiled 
and annotated once at the start of the development 
process. The initial training dataset can be 
supplemented with smaller datasets as the 
samples submitted evolve over time, but the full 
process does not need to be repeated.

Once an annotated training dataset is ready, we 
can use it to train a neural network model to 
perform the segmentation automatically. As a part 
of the training process, we can experiment with 
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different types of neural networks and adjustments 
to the training parameters to optimize the model’s 
performance and ensure it generates results that 
will be most useful when writing the metrology 
recipe. Once the model is trained, we can integrate 
it into a metrology recipe to perform the requested 
critical dimension measurements. The recipe will 
use both results from the neural network and 
conventional image processing techniques, such as 

filtering and thresholding, to draw the critical 
dimension measurements in the correct position. 
Combining both deep learning and conventional 
processing ensures that the measurements will 
match the features in the image as closely as 
possible and that the measurements can be 
adjusted based on feedback from engineers or the 
customer without fully retraining the model. 

Figure 1. An illustration of the development and application process for deep learning-based metrology recipe.

After the metrology recipe is written, it can be loaded 
into EAG’s automated metrology application so that 
engineers and technicians can apply it to images 
from new incoming samples. Once a recipe is 
applied to an image, the measurements can be 
adjusted and reviewed interactively by an engineer 
to ensure every measurement is accurate. For 
some structures, fully automated recipes can also 
be used to generate measurements. From here we 
can create a customized report and calculate 
statistics from large sets of measurements 
depending on the customer’s request. Report 
formatting can even be tailored to work with the 
customer’s own internal data analysis tools. 

Figure 2 illustrates the segmentation results from 
training a vision transformer model on the dataset 
from a 3D NAND sample. Figure 2a shows an 
example image of a 3D NAND capacitor with each 
layer labeled. We focused on the Al2O3/TiN liner, 
blocking oxide, and the nitride storage layers. These 
layers would be particularly difficult to segment by 
conventional image processing due to their close 
intensity values, noisy texture caused by the 
amorphous atomic structure, and weak interface 
contrast. The inner interface of the nitride storage 
layer can often be especially difficult to discern 
visually as seen in some regions of Figure 2a. 
Although this may present some uncertainty when 
annotating individual training images, the training 
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process allows the model to learn the subtle general 
patterns that differentiate these layers. This enables 
the model to provide consistent segmentations that 
best fit the entire training dataset even when there 
may be random annotation errors in individual 
images. The segmentation masks covering each 
layer generated by our model are shown in Figure 
2b. For this application note, we annotated a total of 
53 images, with 10 reserved for validation and 
testing, and trained a variation of the Multi-scale 
Attention Network (MA-Net) model [2] to perform 
the semantic segmentation. We have also trained a 
Unet model [3] using an EfficientNet feature 
extractor [4] on this same dataset and achieved 
comparable results. The required size of the training 

dataset depends on the complexity and variation in 
the images being analyzed, but a typical training 
dataset consists of at least 50-100 images. Other 
types of models, such as instance segmentation, 
may be used if necessary.

The image in Figure 2a is from the reserved testing 
set, so the model was not shown this image during 
the training process. Having enough images to 
reserve for validation and testing is important to 
ensure the model will perform well on new images/
samples it has never seen before. Small errors in 
the segmentation mask that may appear when the 
model is applied to new images can be eliminated 
with a few post-processing steps. 

Figure 2. a TEM image of a 3D NAND structure from a planview lamella. 
               b Segmentation masks for the Al2O3/TiN (green), blocking oxide (red), and nitride storage (blue) layers generated by the vision transformer model.

For the 3D NAND capacitor, we can employ the 
masks shown in Figure 2b to develop various 
metrology recipes using the model for the 
measurements of individual layers and the whole 
structure. Figure 3a illustrates an interactive recipe 
that makes a moderate number of thickness 
measurements of both the nitride and oxide layers. 
These measurements are first estimated based on 
the mask from the model and adjusted based on 
image contrast. Then they are presented to the 
engineer for manual adjustment and can then be 

exported in the customer’s desired format. Figure 
3b shows a case where the outer perimeter of the 
Al2O3/TiN mask is extracted to measure the major 
(red) and minor (blue) axes of the 3D NAND 
structure. Figure 3c shows how the nitride layer 
mask can be used to automatically generate high 
density thickness measurements. This approach 
relies more heavily on the accuracy of the model 
and measurement recipe as the number of 
measurements would be impractical for an engineer 
to review manually. But it is an effective strategy for 
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generating a large dataset of critical dimension 
measurements that may be useful for downstream 
analysis. Although we have focused on thickness/
distance measurements in these images, we can 

also measure other types of values including the 
angles, curvatures, slopes, and fitted parameters as 
required. 

Figure 3. a Results from a metrology recipe that measures the thickness of the oxide and nitride layers, optimized for manual review. 
               b A metrology recipe that measures the major/minor axes of the 3D NAND structure. 
               c A metrology recipe that makes high density measurements of the nitride thickness, optimized for fully automated analysis.

Figure 4. Major/minor axis measurements on multiple 3D NAND structures within the same field-of-view.

Images can also contain multiple objects within the 
field of view, as shown in Figure 4, or more complex 
structures which can be broken down into 
component parts for analysis. EAG will work with 

the customer to collaboratively design a 
segmentation strategy and metrology recipe to fit 
any requested structure and set of measurements.
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Figure 5. a An illustration of how tabular data can be summarized. 
               b An illustration of the types of visualizations that we can generate from a large dataset.

Conclusion
Automatic metrology is an essential tool in process 
and yield control for solid state devices. In this 
application note, we have outlined how deep 
learning can enhance the metrology process to 
deliver accurate automatic critical dimension 
measurements in cases where conventional image 
processing may struggle. By training a vision 
transformer model to segment regular TEM images 
of a 3D NAND structure, we can build metrology 
recipes that generate a variety of critical dimension 
measurements. This enables us to utilize the fastest 
imaging mode available in TEM and collect as much 

information as possible from the resulting images. 
The process illustrated here can be applied to any 
type of imaging data including x-ray, optical, and 
electron microscopy. Eurofins EAG provides our 
customers with access to state-of-the-art microscopy 
facilities and expertise to deliver the highest quality 
imaging data. As demonstrated here, we also offer 
customized quantitative image and data processing 
solutions to help our customers extract the most 
actionable knowledge out of their data and solve 
their most challenging materials science problems. 
Contact us today to learn how we can help with your 
next project.

EAG can also summarize and visualize the critical 
dimension measurements to help our customers 
understand their samples. Tabular data can be 
exported in the requested format and summarized 
with various statistical quantities. In the example in 
Figure 5a, we have calculated some basic statistics 
of the major and minor axes from the whole 3D 
NAND dataset. In addition, we can calculate any 
compound values requested. For example, here we 

have calculated the circularity which is defined as 
the ratio of the minor axis to the major axis. In the 
example in Figure 5b, we used the high-density 
nitride layer measurements to study the film 
thickness in detail. The polar plot shows the 
thickness variation as a function of position around 
the 3D NAND structure and the histogram shows 
the full distribution of thickness measurements.



Eurofins EAG Laboratories - Tel: +1 800 366 3867 - www.eag.com

C
op

yr
ig

ht
 ©

 2
02

4 
EU

R
O

FI
N

S 
SC

IE
N

TI
FI

C
 | 

R
ev

. 0
5.

22
.2

4 
| M

-0
80

02
4

References
[1] A. Tilson, M. Strauss, “STEM/EDS Metrology and Statistical Analysis of 3D NAND Devices”, IEEE 
International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1-5, 2018. DOI: 
10.1109/IPFA.2018.8452545

[2] T. Fan, G. Wang, Y. Li, H. Wang, “MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation”, 
IEEE Access 8, 179656-179665, 2020. DOI: 10.1109/ACCESS.2020.3025372

[3] O. Ronneberger, P. Fischer, T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 
Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234-241, 2015. DOI: 10.48550/
arXiv.1505.04597

[4] M. Tan, Q.V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, International 
Conference on Machine Learning (ICML), pp. 6105-6114, 2019. DOI: 10.48550/arXiv.1905.11946 


